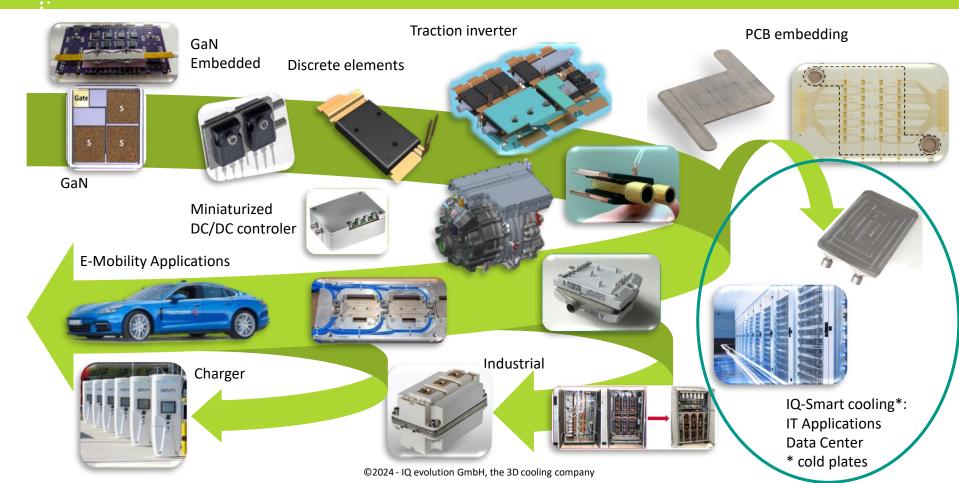


IQ evolution GmbH, the 3D cooling company

3D printed liquid cooled cold plates for direct to chip cooling

Dr. Thomas Ebert, CEO IQ evolution GmbH, Kellershaustr. 21, 52078 Aachen +49 241 913826-0 t.ebert@iq-evolution.com www.iq-evolution.com



Where you can find IQ evolution 3D-printed metal cooler


The "printing" process

- IQE has been developing and manufacturing microcoolers using metal 3D printing for almost 20 years.
- The metal powder is melted layer by layer with the laser beam.
- This enables the production of very thin radiators (from 0.8 mm) with low wall thicknesses.
- Complex internal structures can be manufactured directly in the closed housing.
- IQE has developed a concept that makes series production of several million components per year economically feasible.

The "printing" process

- Dividing the CAD model into 20µm/40µm layers
- Pre-processing of the individual layers (speed, laser power.....)
- Laser melting of the structures, which should subsequently be solid
- Subsequent cavities are not melted

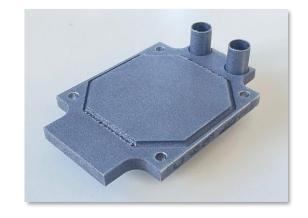
Complex internal structures in a closed

IQ evolution GmbH, the 3D cooling company

Sample: IQ-Smart 53-Alu (AlSi10Mg)

Datasheet

Technical data:

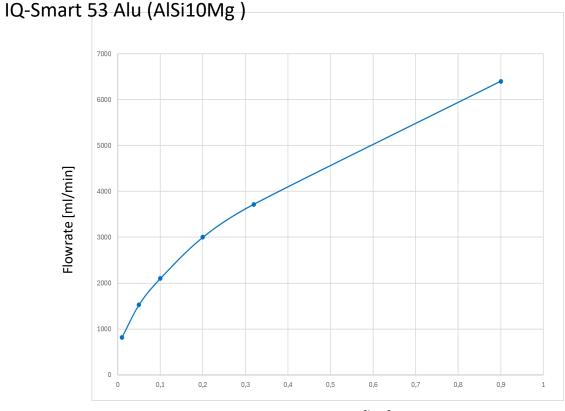

Footprint of cooling area: 53mm x 53mm

Thickness for single side use: 4mm

Weight: 56gr

Connectors: Tube, diameter 10mm

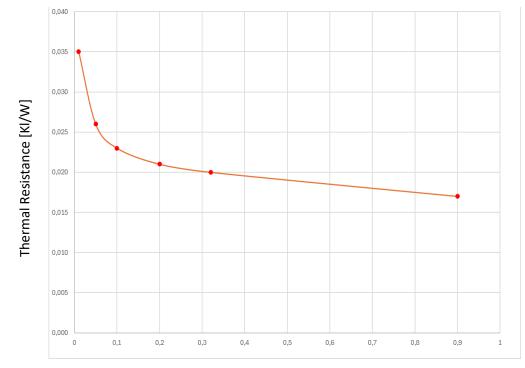
(other diameter and angle on request)



Phone: +49 241 913826-0 info@iq-evolution.com www.iq-evolution.com

Pressure drop characteristic Pure Water

Pressure [bar]	Flowrate [ml/min]
0,01	820
0,05	1530
0,10	2100
0,20	3000
0,32	3720
0,90	6400



Thermal resistance with pure Water @ 2.000 Watt

IQ-Big 53 Alu (AlSi10Mg)

Pressure [bar]	Flowrate [ml/min]
0,01	0,035
0,05	0,026
0,10	0,023
0,20	0,021
0,32	0,020
0,90	0,017

$$T_{in}$$
 Fluid = 15°C
 $dT_{in;surface}$ =39,6°C
 $\rightarrow T_{surface}$ @ 0,32bar = 54,6°C

Pressure Drop [bar]

IQ-ThinCooler vs conventional air/heat pipe cooling

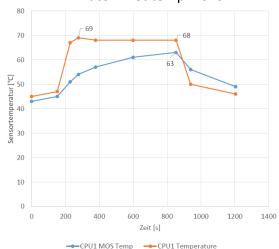
Technology: 3D printing of CPU / GPU cooler

- Thin & ultra-low weight coolers
- Heat flux density of >240W/cm²
- Real life weight reduction of weight and volume
- 1HU server racks possible
- Cooling performance reduces Chip temperature
- Ready for cooling with water @ 60°C
- 3D-printed and ready for mass production
- No corrosion due to the using of stainless steel

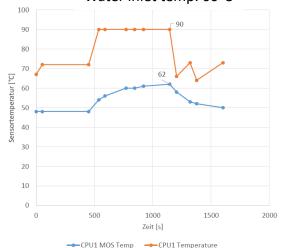
Measured by

www.zfw-stuttgart.com

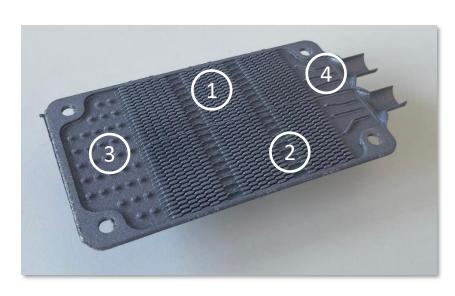
IQ-ThinCooler


Screwed with

thermal paste


AMD Ryzen Threadripper PRO

Water inlet temp. 60°C



Cooling structures adapted to requirements

With 3D printing technology, various structures can be created within a closed housing:

- 1. Cooling structures for high heat flux density
- 2. Cooling structures for intermediate areas with lower heat flux density
- 3. Supporting structures for mechanical loads (e.g. contact pressure when screwing)
- 4. Leading structures for demand-oriented coolant distribution

IQ-Smart 62-Alu (AlSi10Mg)

Cost reduction

The costs of the parts are mainly related to the duration of the whole process

The process duration consists of two kinds of times:

"Laser On" Time

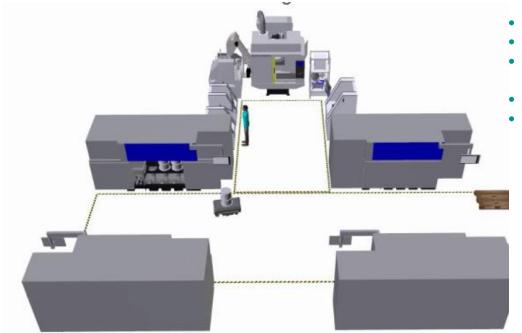
The more components, the longer the process takes Powder application

Is only dependent on the number of layers, not on the number of components

- Building as many parts as possible at one "job"
- Using multi Laser machines
- Only print what you realy need to print
- Keep the time from job to job short

 Distributes the powder application time to the number of components

 Leaves the "Laser On" time short despite a lot of parts


 Leaves the "Laser On" time short for every printed part

Running the printers in high automatic mode

evolution IQ Twin automotive as example for cost and mass production

- Smallest setup with 100.000 parts per month
- 3D-printer running fully automatically (24/7)
- Mechanical machining and testing by manual handling (one shift)
- Easily scalable by doubling the number of printers
- Further scaling by increasing the number of printers, multi-shift production and/or automation of the manual activities

- IQ Twin is manufacturered, mechanically processed and tested every 90 seconds
 - Estimated cost for >=25 Mio pieces per year: <10€

In cooperation with LEWA Attendorn GmbH